The Singular Value Decomposition and Low Rank Approximation

نویسنده

  • MANTAS MAŽEIKA
چکیده

The purpose of this paper is to present a largely self-contained proof of the singular value decomposition (SVD), and to explore its application to the low rank approximation problem. We begin by proving background concepts used throughout the paper. We then develop the SVD by way of the polar decomposition. Finally, we show that the SVD can be used to achieve the best low rank approximation of a matrix with respect to a large family of norms.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Face Recognition Based Rank Reduction SVD Approach

Standard face recognition algorithms that use standard feature extraction techniques always suffer from image performance degradation. Recently, singular value decomposition and low-rank matrix are applied in many applications,including pattern recognition and feature extraction. The main objective of this research is to design an efficient face recognition approach by combining many tech...

متن کامل

A Fast Implementation of Singular Value Thresholding Algorithm using Recycling Rank Revealing Randomized Singular Value Decomposition

In this paper, we present a fast implementation of the Singular Value Thresholding (SVT) algorithm for matrix completion. A rank-revealing randomized singular value decomposition (RSVD) algorithm is used to adaptively carry out partial singular value decomposition (SVD) to fast approximate the SVT operator given a desired, fixed precision. We extend the RSVD algorithm to a recycling rank reveal...

متن کامل

A Rank Revealing Randomized Singular Value Decomposition (R3SVD) Algorithm for Low-rank Matrix Approximations

— In this paper, we present a Rank Revealing Randomized Singular Value Decomposition (R 3 SVD) algorithm to incrementally construct a low-rank approximation of a potentially large matrix while adaptively estimating the appropriate rank that can capture most of the actions of the matrix. Starting from a low-rank approximation with an initial guessed rank, R 3 SVD adopts an orthogonal Gaussian sa...

متن کامل

Literature survey on low rank approximation of matrices

Low rank approximation of matrices has been well studied in literature. Singular value decomposition , QR decomposition with column pivoting, rank revealing QR factorization (RRQR), Interpolative decomposition etc are classical deterministic algorithms for low rank approximation. But these techniques are very expensive (O(n 3) operations are required for n × n matrices). There are several rando...

متن کامل

2-Dimensional Singular Value Decomposition for 2D Maps and Images

For a set of 1D vectors, standard singular value decomposition (SVD) is frequently applied. For a set of 2D objects such as images or weather maps, we form 2DSVD, which computes principal eigenvectors of rowrow and column-column covariance matrices, exactly as in the standard SVD. We study optimality properties of 2DSVD as low-rank approximation and show that it provides a framework unifying tw...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016